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Abstract-Based both on the equations for mean squares of velocity and temperature thictuations and 
on the model ones for appropriate field vorticity, consideration is made of degeneration of homogeneous 
and nonisotropic velocity and tem~rature fields. Asymptotic relations have been checked experimentally. 

NOMENCLATURE 
r time ; 

2 
4, = iif. turbulence intensity; 

a2 
A<. = 2, Laplace operator in <-space; 

)i 

r. + t, vector component for distance between 
two points; 

-7 
Uiuir two-point velocity correlation; 
v, c~~cient of kinematic viscosity; 
G thermal diffusivity; 
Xi. Cartesian system of coordinates; 
tt’, two-point temperature correlation; 

Pr, = v , Prandtl number. 
K 

1. INTRODUCTION 

As IS known, the model of homogeneous and non- 
isotropic turbulence gives a more strict approach to 
real turbulence, as compared to the simplest and most 
thorou~ly studied one for homogeneous and isotropic 
turbulence. ~emathematic~ techniques of correlation 
tensors of axisy~etric turbulence, being the simpfest 
form of homogeneous nonisotropic turbulence, were 
developed by Batchelor [l] and Chandrasekhar [2] on 
the same level as that of isotropic turbulence. However, 
the use of these techniques to approximately describe 
real turbulent flows involves difficulties because the 
problems on homogeneous and nonisotropic turbu- 
lence transfer are not yet worked out. 

In the present work an attempt is made to employ 
the model equations of velocity and temperature field 
vorticity as well as those of fluctuation “intensity” for 
approximate description of velocity and tem~rature 
fields at homogeneous nonisotropic turbulence. In this 
case the authors have tried to answer the following 
two questions: (1) May the results of the known exact 
relations for decay of vector and scalar isotropic fields 
be used to describe homogeneous and nonisotropic 
fields? (2) Are the transfer coefficients of the model 
equations for vorticity constants and if not, then which 
combinations of the above coefficients and the tur- 
bulent and Peclet numbers are constants? 

2. ANALYTICAL CONSIDERATION OF STATISTICAL 
TRANSFER COEFFICIENTS AT UNIFORM TURBULENCE 

The equations for the mean square intensity of 
fluctuation velocity and vorticity at homogeneous tur- 
bulence may be written as: 

%+lOvD =o ” 

dr - 

&D.+L+gj.0;~2 = 0 38 
(2.2) 

where D, = f( - 4 ur~i)~ =e is the vorticity of a velocity 

field; the coefficients $ and & are the dimensionless 
quantities composed of differential operators with 
respect to a variable < of two-point velocity corre- 
lations : 

6J15 (-A,A<a)c=O 
&=Tv 

(-A<nin~)~Ee 
(2.3) 

(2.4) 

For homogeneous and isotropic turbulence, equa- 
tions (2.1) and (2.2) assume the well-known form [3] 
where the vorticity D, is expressed in terms of Taylor’s 
dissipation scale according to the obvious identity 

D* = !!? 
” r, 

where the asterisk denotes that the function is con- 
sidered at isotropic turbulence, and the coefficients S, 
and $, admit the well-known form : 

lad3 
,$*= \ax,l 

/au,\ 
2 3/2 

(2.3*) 

(2.4*) 
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where ui is the velocity fluctuation in the u,-direction. 

Similar to equations (2.1) and (2.2). the equations 
may be written for the mean square of fluctuations 
and “dissipation” (smearing) function of a uniform tem- 

perature field 

gr’+lZKD,=O (2.5) 

&D*+& +s@.“2D, = 0 
d3 

(2.6) 

where D, = &(-A; u’)~=~ is the smearing function of a 

temperature field, the coefficients S, and S, mean the 
dimensionless functions of differential operators with 
respect to < of two-point velocity and temperature 
correlations : 

2J15 
S,=--- 

5 (-A.$).= (-A.n.u’)“‘z 5 \o ,11:0 

At homogeneous and isotropic turbulence, the function 
D, is expressed in terms of a dissipation scale of a 
temperature field (thermal microscale) in the form: 

i2 
0: = $ 

f 
and the coefficients S, and S, take the form: 

(2X*) 

Applicability of equations (2.1)-(2.2) and (2.5)-(2.6) 
to describe homogeneous velocity and temperature 
fields is established by a knowledge of the coefficients 
$. S,, and S, . S, as the functions of the Reynolds and 

Peclet numbers 

where I, and I, are some length scales of velocity and 
temperature fields, respectively. As far as the authors 
know, the functional relations of the above coefficients 
for homogeneous and nonisotropic fields in the forms 
(2.3))(2.4) and (2.7)-(2.8) were not earlier determined. 
There are nevertheless a great number of works [4-61 
covering the information on the coefficient S.* for an 
isotropic field. The data on the coefficient S,? are given 
in [3]. In the equation for D, the appropriate coefficients 
for an isotropic temperature field are less studied. The 
authors know only the works by Yaglom [7] and 
Wyngaard [8]. in which consideration is made of the 

coefficient &*; the authors of the present work are not 
familiar with works devoted to determination of S2. 

The functional dependences of S,?, g and S$, S,* 

upon the Reynolds and Peclet numbers may be ob- 
tained only at limiting values of these determining 

parameters. Indeed, at R, K 1 and Pi K 1 diffusional 
terms may be neglected in equations (2.4*) and (2X*). 
Then, we shall have the following two pairs of the equa- 

tions for velocity and temperature fields. respectively: 

2 

;q2+10,+= 0 
“U 

$:+,* 
i 

10-&T-Rj, 

343 > 
= 0 

df2 i2 
zf12ti .-- = 0 

A: 

&i:+K 
( 

l2&S*P& =O 
3J3 i ! 

Rj, = q&/v and PA = q&/K are the “microscale” 
Reynolds and Peclet numbers, respectively. The solu- 
tions of these pairs of the equations at 

: 
S,?. R,: = Sudis = const and SK .‘& .k = Stdls = const 

,. 

admit the form: 

q2(l,2)‘+ = const (2.9) 

t2 (l:Pb = const (2.10) 

where 

7 
a = ~ St, dis - 1; 

5 

3oJ3 
h=---. ,8 J3 Srdts-1. 

Proceeding from Loitsyansky [9] and Corrsin [lo] 

invariants, in equations (2.9) and (2.10) a = 2/5 and 
b = 2/3 should be assumed. In this case we shall have 

zdis = s;cdrs = 6 J3. (2.11) 

Thus, at very low values of the Reynolds and Peclet 
numbers the coefficients &*dis and s%is for isotropic 
velocity and temperature fields are constants, i.e. the 
coefficients S;* and S,* are the functions of the Reynolds 

and Peclet numbers 

6J3 s*=r, 
I 

S, = 6,3$-Pr. 

At very high values of the Reynolds and Peclet num- 

bers, equations (2.1)-(2.2) and (2.5)-(2.6) in terms of 
large scale turbulence may be written as: 

dL 
dz+5 

7 

3-15 J3 
-(S,?+S:).R;” 

I 
q =0 

II =o 
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where 

are the scales of decay of velocity and temperature 
fields; RL = qL./v and Pr. = qLJx are the “macroscale” 
Reynolds and Peclet numbers, respectively. If the 
following relations 

J3 PL 
~(3s:+$*)~-~r~~=j$dir-$dif=conSt 

are assumed to be valid, then the solutions of the above 
pairs of the equations are of the form: 

q2L~10= const; f2L:lb = const 
where 

5 
b=_ 

1243 
-1. 

That the aboveequalities should satisfy the Loitsyansky 
and Corrsin invariants, a = t/5, b = l/3 should be 
assumed. As a result the relations for dissipative and 
diffusional coefficients : 

(2.13) 

may be obtained. These relations show that at large 
values of the Reynolds and Peclet numbers, not the 
coefficients S,*, ST and ST, S,* which enter equations 
(2.2) and (2.6) and are often assumed to be constants [3], 
are constants but their combinations g$is, Sl$if and 
S%is, s;rdit in the L.H.S. of equations (2.12) and (2.13). 

Asymptotic relations (2.11), (2.12) and (2.13) are valid 
for homogeneous and isotropic velocity and tempera- 
ture fields. The analysis, similar to the above one, may 
not be made of homogeneous but nonisotropic fields, 
as the laws of degeneration of such fields are in- 
sufficiently studied. Direct experimental check of the 
asymptotic relations obtained is therefore advisable. 

In the experiment under consideration statistical 
transfer coefficients &dis, &djf, &$dis and &dir are 
measured over a wide range of the Reynolds and Peclet 
numbers to check, whether there exists an agreement 
between the values of the coefhcients from asymptotic 
relations (2.12) and (2.13) and those found from direct 
experiments on homogeneous and nonisotropic turbu- 
lence. 

The coefficients Sudis, x&f, Sdis, &dir, written in 
terms of the correlation functions, are of the form: 

- 
3043 z(-AgA<uiUj)<=e 

&dis = - 7 ’ (-AL\ruiu:):=o 
(2.14) 

-30 J3 q2 &d,r=-.-. 
I v (-Aculu;):za 

'-' (2.15) 

(2.16) 

(2.17) 

3. EXPERIMENTAL ARRANGEMENT AND TECHNIQIJES 

From relations (2.14)-(2.17) it follows that for exper- 
imental check of statistical transfer coefficients 
measurement should be performed of two-point corre- 
lations functions of temperature and velocity in three 
directions 

- __ 
Uid(9, UjU~U~(~). 2(t), Uift’([) 

and then caiculation should be made of the derivatives 
of appropriate orders (up to the fourth order inclusive) 
of the correlation functions. The simplest form of 
uniform nonisotropic turbulence, i.e. axisymmetric tur- 
bulence, was employed in such an experiment. 

Experiments were carried out in the closed-type wind 
tunnel with a round cross-section, 1.25m in dia. The 
homogeneity of the simplest statistical characteristics 
of a velocity field U1, m, G:, U:, ii:, Gj was achieved 
by placing a coarse-cell grid (turbulence generator) 
before the confuser and some fine-cell grids, in different 
cross-sections of the “return” duct. The turbulence 
generator is made of duralium 0.021 m dia tubes. Here, 
in the test section of the wind tunnel the flow is 
developed with the following characteristics: 

(ii:)“2 
tTil = 4-24m/s: ~~ = 

f-J1 
0.007; ;+ 1.7; 

1 

ii: 
- = 0.005; 
(ii:)=2 

($& < 0.01. 

That a uniform temperature field be achieved, use was 
made of an electrically heated ~onst~tan 0.002 m dia 
wire grid with a square cell (0.04m in size) placed 
downstream the turbulence generator grid at a distance 
of 0.1 m. In the test section the temperature generator 
grid ensured a uniform temperature field with mean 
square values of fluctuations equal to 0.220.3”C. 

Velocity fluctuations were measured by the standard 
DISA thermoanemometer system involving constant- 
temperature 55DOl thermoanemometers, 55DlO lin- 
earizors, 55D26 auxilliary units; effective-value 55D35 
voltmeters. Special compensated resistance ther- 
mometers were used to measure temperature fluctu- 
ations. Temperature sensors were manufactured of a 
copper-plated tungsten wire 2.0~ in dia. The length 
of an uncovered sensitive element was about 1 mm. 
Statistical treatment of signals of thermoanemometers 
and resistance thermometers was performed on the 
computer “Minsk-22”. For this purpose the signals of 
the primary devices after filtration and amplification 
were fed to an eight-bit six-channel analog-to-digital 
converter and then to the electronic digital computer. 
The digitizing system is described in [ll]. 

HMT Vol. 19. No. X--E 
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4. EXPERIMENTAL METHODS 

As expressions (2.15) and (2.17) give third-order 
derivatives of correlation functions ujuiui and aitt in 

all directions (k = 1,2,3) and at arbitrary values of i 

and j (i = 1,2,3; j = 1,2,3) should be calculated to find 

diffusional coefficients of velocity and temperature 
fields S.,, and Stdil. It is quite clear that this problem 

cannot be practically solved. That the number of the 
functions measured be diminished, use was made of the 
approximate expressions involving homogeneous non- 
isotropic correlations for near points [ 121 

-, 
143R’3’[(rZ~~+IZ,5mb+Kj~~~~i)~k uiujuk = 18 43 

- :r2(Riktj+ Kjk<i) f . .] 

Q? =4i2(~R’1’K,“5,4n+..-)Ti 
J3 

where 

These relations show that the complexes Rt3’ and R(l) 
being in expressions (2.15) and (2.17) for diffusional 
coefficients, may be determined at any convenient set 
of i, j and k indices. Thus, the diffusional coefficients 
may be presented, in particular, as : 

SO, that &dir and &dir be found experimentally, besides 
determination of double correlations for velocity and 

temperature uiui and tt’, measurement should be made 
only of one component of the third-rank tensor of 
velocity correlations m’,(c) and one component of 
the first-rank tensor of a mutual velocity and tempera- 
ture correlation u1 E’(c). 

When testing, to avoid multiple calibration of the 
apparatuses, not correlation functions but correlation 
coefficients were measured. To calculate longitudinal 
correlation coefficients (with respect to tl), the “frozen 
turbulence” hypothesis was employed, i.e. spatial-time 
correlation coefficients were measured instead of spatial 
ones. In this case the longitudinal coordinate step was 
prescribed by the sampling frequency : 

wherefis the sampling frequency, 7 is the time shift. 
To measure transverse correlation coefficients (with 

respect to t2 and t3). sensors were located at two 
spatial points, one of them being travelled in a given 
transverse direction. The initial distance between these 
sensors was measured by a microscope. 

Determination of two-point mutual correlation func- 
tions for temperature and velocity is concerned with 

great difficulties since in this case the output signal of 
a thermoanemometer depends both on velocity and 
temperature fluctuations. The methods to measure 
coefficients of mutual correlation will be considered 
using the coefficient of triple mixed correlation ui m(7) 

as an example. Output signals of the thermo- 

anemometer and resistance thermometer, whose 
sensors are located close to each other, are of the form: 

L, = au1 -flr+m; /2 = yt+k; I3 = aul +m 

where el is the thermoanemometer signal in the non- 
isothermal flow; CC. b, 7, are sensitivity coefficients; 

m and k are thermoanemometer and resistance ther- 
mometer noises, respectively. Once the signal and 

noises obtained are uncorrelated, the correlation coef- 
ficient measured admits the form: 

Since the instrument noises make a small contribu- 
tion to the integrands, then their mean-square values 
may be neglected. The previous relation may then be 
written as: 

r: 
PIdirt = Pm c + PA(Z) 

r: ! 1 7-1 (4.1) 
3 

To calculate the correlation coefficients pulrtcr,, the 
additional measurement was made of the correlation 

coefficient ptztCr, along with statistical treatment only 
of the resistance-thermometer signal. Thus, that this 
function ~~2~~~) would correspond to the function from 

equation (4.1), the thermometer and resistance ther- 
mometer should equally reproduce a temperature 
fluctuation spectrum; in this case the degree of fluc- 
tuation spectrum reproduction was estimated by a 
coincidence of the functions pttcr) measured by the 
thermoanemometer and resistance thermometer. At 
last, as the correlations pultrCr, were measured by the 
thermoanemometer and resistance thermometer with 
different frequency and phase responses, then the latter 
should be equalized. 

Two sensors were placed at the working point with 
coordinates (O,O, 0) to measure a mutual moment 
~~~~~~~~~ One of the sensors is operated by the constant- 
temperature anemometer system and is sensitive to 
velocity and temperature fluctuations. The resistance 
thermometer system is provided with the second sensor 
which is sensitive to temperature fluctuations. Output 
signals of the thermoanemometer and resistance ther- 
mometer were amplified, filtered, converted to a digital 
code and input to the electronic digital computer to 
calculate a moment pU, llC ). 
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The derivatives of the correlation functions measured 
were calculated by the finite-difference formulae. Infor- 
mation content, by which the correlation fun~ions 
were calculated, was chosen so that the calculation 
error of a derivative due to statistical one of coordinate 
determination should be less 5%. 

5. RESULTS AND DISCUSSION 

Figure 1 gives a plot of mean square values of 
transverse and longitudinal velocity fluctuations as well 
as total kinetic turbulence energy against an averaged 
velocity. This chart shows the degree of flow unisotropy 
and turbulence intensity in the test section at different 
values of the flow velocity. 

6 12 16 20 24 

u, m/s 

FIG. 1. Plot of mean square values of longitudinal, trans- 
verse velocity fluctuations and kinetic turbulent energy vs 

flow velocity 1. J(G:): 2. J(ii$); 3, q* = J(uf). 

In the experiment the directly measured functions 
used for calculating dimensionless coefficients Sudis, 
&dir, &dis and sdif are normalized two-point corre- 
lation functions of velocity and temperature. Figures 
2-4 show values of the correlation coefficients 

pUiUiCti.t2l* P~M,.:~) and P~~x,.~,) near a point t = 0. 

These functions are symmetrical, relative to the ordin- 
ate axis, that points to flow homogeneity for second- 
order moments. 

As has been shown in Section 1, the Reynolds and 
Peclet numbers constructed by the appropriate scales 
are characteristic parameters of nonisothermal uniform 
turbulence. Small-scale homogeneous nonisothermal 
turbulence is characterized by RI and PA plotted by 
dissipation scales 

and large-scale turbulence, by RL and PL constructed 
by degeneration scales 

L”& LIZ4i2. (5.2) 
1 ” ED* 

Ranges of micro- and macroscale Reynolds and Peclet 
numbers corresponding to the experiment under con- 
sideration are shown in Figs. 5-6. Values of D, and 
D, functions for velocity and temperature fields were 
found on the basis of the measured correlation func- 
tions differentiated with respect to the coordinates {i 

and &. Figure 7 gives a chart of the vorticity function 
change for a velocity field. As is seen from this figure, 
with the velocity increase there occurs a very rapid 
growth of D, which exceeds that by 3-4 orders. The 
values of D, and D, as well as mean square values of 
velocity and temperature fluctuations q and tZ were 
used to calculate degeneration and dissipation scales. 
The character of a change in A,, and A, is shown in 
Fig. 8. Due to a very rapid increase in D, and D, the 
length scales are the decreasing functions of a mean 
velocity U. It is interesting to note that the ratio of 
dissipation scale squares is practically constant, that 
follows from exact asymptotic solutions. This fact con- 
firms indirectly the validity of the adopted general- 
ization of scales to the case of homogeneous turbulence 
[equation (.5.1)]. Figure 9 shows a dependence of 
degeneration scales on the flow velocity. With an in- 
crease in U the degeneration scales tend to constant 
asymptotic values, and their ratio remains practically 
constant. This result is known as a consequence of the 
laws of isotropic turbulence decay at very large values 
of the Reynolds and Peclet numbers and confirms the 
validity of generalizations (5.2) to homogeneous 
turbulence. 

That dimensionless coefficients of a homogeneous 
field be calculated, besides spatial two-point corre- 
lation coefficients of a velocity and temperature, 
measurement was made of mutual correlation coef- 
‘icients pulrii,,, pulttiS,) and third moments of a velocity 
field p u,u,ul~r,~. The signal u1 in a digital form was 
input to the computer to calculate the third moment 
of a velocity field, and the value of pululu,,i,j was 
evaluated at four equidistant points with coordinates 
(O,O, O), (51 = hl, 0, 0), (51 = h2, 0, 01, cr1 = h3, 0, 0). 

The third moment calculated in such a fashion is shown 
in Fig. 10. Figure 11 gives a general form of a mutual 
moment putttcr) at a flow velocity of 8m/s. It should 
be noted that the general form of the third moments 
agrees well with the data of other authors, i.e. the 
moments are antisymmet~cal functions and approach 
the abscissa axis with a zero derivative (Figs, 10-i 1). 

After calculating the appropriate differential oper- 
ators of spatial two-point correlations for velocity and 
temperature fields at a point < = 0, statistical coef- 
ficients &dis, &dis, &difr Sdit were calculated over a 
considered range of the Reynolds and Peclet numbers 
(Figs. 5 and 6). The character of the behaviour of 
coefficients &dis and $dis is shown in Fig. 12. The 
curves presented here are the averaging results obtained 
in different experiments. The necessity of such aver- 
aging is explained by the fact that calculation of 
derivatives due to “experimental noise” is inevitably 
connected with the errors even at small deviations of 
the determined correlation functions from the actual 
ones. Estimates of mean square errors of calculation 
of the coefficients $dis and Sdis are 30 and 12x, 
respectively. Convenience of application of a mean 
square error as a numerical expression for error results 
in the fact that a certain confidence probability equal 
to 0.68 corresponds to this quantity. The confidence 
probability equal to 0.95 satisfies a doubled value of 
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E ,, mm E 2r mm 

FIG. 2. Space normalized correlation functions of a longitudinal component of velocity 

fluctuations. 

0.6 . 
I 2 2.25 4.50 

E I, mm E zi mm 

Ftc;. 3. Space normalized correlation functions of a transverse component Of velocity 

fluctuations. 

1.0 

0.9 

-- 
-h 
Y 

UI 
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4t 4= 
0.8 08- .- 

/ 

1 

I 
I 0.7 07” 

0 I 2 0 I 2 

E ,, mm f Zr mm 

FIG. 4. Space normalized correlation functions of temperature fluctuations. 
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U. m/s 

FIG. 5. Ranges of the Reynolds and Peclet numbers based 
on macroscales. 

U. m/s 

FIG. 6. Ranges of the Reynolds and Peclet numbers based 
on microscales. 

d 3.0 

4 

1.5 

4 8 12 16 20 24 

U. m/s 

FIG. 7. Plot of functions D, and D, vs flow velocity. 

I 31 I I 
I I I I I I I 

4 8 12 16 20 

W m/s 

FIG. 8. Plot of velocity. temperature microscales and their 
ratio vs flow velocity: l,&: 2, A,: 3, i.:i.,. 

4 8 12 I6 2% 24 

“. ml/s 

FIG. 9. Plot of velocity, temperature macroscales and their 
ratio vs flow velocity: 1, L,: 2, L,; 3, L./L,. 

E ,, mm 

FIG. 10. Normalized function of triple two-point correlation 
of longitudinal velocity fluctuations: U = 16 m/s. 

z 0.02 

2 

0.01 

0 2 4 6 8 10 12 14 

El, mm 

FIG. 11. Mutual normalized function of triple two-point 
correlation: U = 8 m/s. 

FIG. 12. Plot of coefficients Sudis (2) and Stdis (I) vs the 
Reynolds and Peclet numbers. 

Pro. 13. Plot of coefficients S,,dir and Sdif vs the Reynolds 
and Peclet numbers, 
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the mean square error. The curves depicted in Fig. 12 
show that the coefficients Sudir and S, dis are the functions 
of RL and PL. Otherwise, over a wide range of the 

Reynolds and Peclet numbers the above coefficients 
are not universal constants. Estimates of mean square 
errors of these coefficients are 25 and 12”“. respectively, 
and are also the functions of the Reynolds and Peclet 
numbers. These dependences are given in Fig. 13. 

Taking into account statistical coefficients of scale 
parameters. the following functions 

Sdis-&dif = FI(RL) 

i 
s&dis-&dif - J3 i g = Fz(PL) 

L 

may be constructed, which, as it follows from asymp- 

totic relations (2.12) and (2.13) at RL s 1 and PL B 1. 
are constants. The first of these dependences is 
presented in Fig. 14. The limiting value of the function 

equal to (51J3)Jl is shown by a dotted line. As we 
see, at nonisotropic turbulence the quantity F1(RL) is 

rather a strongly varying function of the Reynolds 
number. As far as RL increases, it asymptotically 

approaches its limiting value. Thus, based on the 
experimental results obtained, an assumption may be 
made that at homogeneous nonisotropic turbulence. 

I 

\ c 

_----- -lb ------ ----- 
3.5 4.0 

W R, 

4.5 

FIG. 14. Plot of the function Fr vs the Reynolds number. 

lol 

F2 5c 

16J5 
5 
___--,‘.___ 

I I _I 
3.0 35 1.0 

log 9 

FIG. 15. Plot of the function FZ vs the Peclet number. 

relation (2.12) is satisfied with RI. ---t ~8. Numerical 
values of the function F2(PL) depending on the macro- 
scale Peclet number are given in Fig. 15, where the 
asymptotic value of Fz obtained analytically and equal 
to (16 J3)/5 is also presented. As is seen from this chart, 
unlike the quickly varying function F1(Rr,). the func- 
tion F2(PL) varies rather slowly. In this case it may 
be assumed that &(I’,) exhibits a tendency to asymp- 
totic value approach but its achievement is probably 
possible at rather large Peclet numbers than those 
attained in this experiment. It should be noted how- 

ever that it is hardly possible to attain very large 
Peclet numbers for decaying turbulence under labora- 

tory conditions. Based on the above experimental data 
an assumption will be therefore made that relation 

(2.13) is valid at very large Peclet numbers in the case 
of uniform homogeneous nonisotropic turbulence. 

Thus, as a result of the above experimental study 
of a fine structure of uniform turbulence, invariants 
(2.12) and (2.13) for statistical coefficients of isotropic 

fields of a velocity and temperature are shown to be 
also valid for homogeneous and nonisotropic fields 

with very large values of the Reynolds and Peclet 
numbers. 

5. 

6. 

I. 

8. 

9. 

10. 

11. 

12. 
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R&sum&-On considire la decroissance de la turbulence dam des champs de vitesse et de temperature 
homogenes et anisotropes. L’etude s’appuie sur les equations des moyennes quadratiques des fluctuations 
de vitesse et de temperature et sur les equations modelisbes du champ de vorticite approprie. Les relations 

asymptotiques ont et& vtrifiees experimentalement. 

~TATI~TI~CHE UBERGANGSK~EFFIZIENTEN ~l.3~ HOMOGENE 
GESCHWINDIGKEITS- UND TEMPERATURFELDER 

Zusammenfaasung-Aufgrund der Gleichungen fur mittlere Geschwindigkeits- und Temperaturschwan- 
kungen und des Modells eines Wirbelfelds werden Betrachtungen angestellt iiber den Abbau homogener 
und nicht-isotroper Geschwindigkeits- und Temperaturfelder. Asymptotische Beziehungen wurden 

experimentell nachgeprtift. 

CTATMCTMYECKME K03@@MUMEHTbl I-IEPEHOCA OAHOPOAHblX 
IIOJIER CKOPOCTM I4 TEMfIEPATYPbI 

AmroTaqmr - Ha OCHOBaHClH )‘paBHeHHti jUlll CpCnHL4X KBZlJJpaTOB CKOPOCTA A TCMIlepaTypbl H 

MOfle,,bHblX YpaBH‘ZHHi? 3aBt,X,,CHHOCT&, COOTBf2TCTBYEOUHX IIO,d paCCMaTp,4BaCTCfl BblpO&!lCHkiC 

OLlHOpOnHblX H HCM30TPOflHblX ilOJl&i CKOPOCTH H T’.?MIlepZiT)‘pbl. kHMn?OTH’IWKkie COOTHOUleHHR 

flpOBCpflnHCb 3KCn’CPWMCHTiW,bHO. 


